博客
关于我
Anaconda+tensorflow2.0+python3.7配置
阅读量:393 次
发布时间:2019-03-05

本文共 1167 字,大约阅读时间需要 3 分钟。

Anaconda安装Tensorflow的详细步骤

安装Anaconda环境

首先,确保系统上已安装Anaconda。打开Anaconda Prompt(在Windows上)或终端(在macOS/Linux上),进入Anaconda的命令行环境中。

创建Tensorflow环境

接下来,创建一个专门用于Tensorflow的虚拟环境。这可以确保项目中的依赖管理更加清晰。

conda create -n tensorflow python=3.7

激活Tensorflow环境

激活刚创建的Tensorflow环境,使得命令行操作使用该环境下的依赖。

activate tensorflow

使用清华源安装Tensorflow

为了确保Tensorflow的可靠性和稳定性,建议使用清华镜像源进行安装。

pip install tensorflow -i https://pypi.tuna.tsinghua.edu.cn/simple/

验证Tensorflow安装

进入Tensorflow环境后,打开Python解释器进行验证。

python

在Python交互式环境中输入以下代码验证Tensorflow是否正确安装:

import tensorflow as tfprint(tf.__version__)

如果没有错误输出,说明Tensorflow已经成功安装。

安装Jupyter Notebook

为了在Jupyter Notebook中使用Tensorflow,需要安装对应的工具。

conda install ipythonconda install jupyter

在Jupyter Notebook中使用Tensorflow

在打开Jupyter Notebook后,选择新建单元格,输入以下代码导入Tensorflow库:

import tensorflow as tf

这样,Tensorflow就可以在Jupyter Notebook中正常使用。

注意事项

在实际使用过程中,可能会遇到Tensorflow版本相关的问题。这种情况通常是由于Tensorflow版本升级导致的旧API与新版本不兼容。

解决方法

如果遇到版本问题,可以参考Tensorflow官方文档或社区资源,了解最新版本的API变化。确保在使用过程中遵循最新的开发者文档,以避免因版本不兼容而产生的问题。

API变化对照表

Tensorflow在每个版本中都会进行重大更新,旧版本的API可能会因新版本的改进而被移除或修改。建议在安装新版本Tensorflow后,查阅官方文档,了解新增的API及其对应的替代方法。

通过以上步骤,可以顺利安装并使用Anaconda环境下的Tensorflow,进一步提升数据处理和机器学习项目的效率。

转载地址:http://olbzz.baihongyu.com/

你可能感兴趣的文章
multiprocessing.pool.map 和带有两个参数的函数
查看>>
MYSQL CONCAT函数
查看>>
multiprocessing.Pool:map_async 和 imap 有什么区别?
查看>>
MySQL Connector/Net 句柄泄露
查看>>
multiprocessor(中)
查看>>
mysql CPU使用率过高的一次处理经历
查看>>
Multisim中555定时器使用技巧
查看>>
MySQL CRUD 数据表基础操作实战
查看>>
multisim变压器反馈式_穿过隔离栅供电:认识隔离式直流/ 直流偏置电源
查看>>
mysql csv import meets charset
查看>>
multivariate_normal TypeError: ufunc ‘add‘ output (typecode ‘O‘) could not be coerced to provided……
查看>>
MySQL DBA 数据库优化策略
查看>>
multi_index_container
查看>>
mutiplemap 总结
查看>>
MySQL Error Handling in Stored Procedures---转载
查看>>
MVC 区域功能
查看>>
MySQL FEDERATED 提示
查看>>
mysql generic安装_MySQL 5.6 Generic Binary安装与配置_MySQL
查看>>
Mysql group by
查看>>
MySQL I 有福啦,窗口函数大大提高了取数的效率!
查看>>