博客
关于我
Anaconda+tensorflow2.0+python3.7配置
阅读量:393 次
发布时间:2019-03-05

本文共 1167 字,大约阅读时间需要 3 分钟。

Anaconda安装Tensorflow的详细步骤

安装Anaconda环境

首先,确保系统上已安装Anaconda。打开Anaconda Prompt(在Windows上)或终端(在macOS/Linux上),进入Anaconda的命令行环境中。

创建Tensorflow环境

接下来,创建一个专门用于Tensorflow的虚拟环境。这可以确保项目中的依赖管理更加清晰。

conda create -n tensorflow python=3.7

激活Tensorflow环境

激活刚创建的Tensorflow环境,使得命令行操作使用该环境下的依赖。

activate tensorflow

使用清华源安装Tensorflow

为了确保Tensorflow的可靠性和稳定性,建议使用清华镜像源进行安装。

pip install tensorflow -i https://pypi.tuna.tsinghua.edu.cn/simple/

验证Tensorflow安装

进入Tensorflow环境后,打开Python解释器进行验证。

python

在Python交互式环境中输入以下代码验证Tensorflow是否正确安装:

import tensorflow as tfprint(tf.__version__)

如果没有错误输出,说明Tensorflow已经成功安装。

安装Jupyter Notebook

为了在Jupyter Notebook中使用Tensorflow,需要安装对应的工具。

conda install ipythonconda install jupyter

在Jupyter Notebook中使用Tensorflow

在打开Jupyter Notebook后,选择新建单元格,输入以下代码导入Tensorflow库:

import tensorflow as tf

这样,Tensorflow就可以在Jupyter Notebook中正常使用。

注意事项

在实际使用过程中,可能会遇到Tensorflow版本相关的问题。这种情况通常是由于Tensorflow版本升级导致的旧API与新版本不兼容。

解决方法

如果遇到版本问题,可以参考Tensorflow官方文档或社区资源,了解最新版本的API变化。确保在使用过程中遵循最新的开发者文档,以避免因版本不兼容而产生的问题。

API变化对照表

Tensorflow在每个版本中都会进行重大更新,旧版本的API可能会因新版本的改进而被移除或修改。建议在安装新版本Tensorflow后,查阅官方文档,了解新增的API及其对应的替代方法。

通过以上步骤,可以顺利安装并使用Anaconda环境下的Tensorflow,进一步提升数据处理和机器学习项目的效率。

转载地址:http://olbzz.baihongyu.com/

你可能感兴趣的文章
MySQL SQL 优化指南:主键、ORDER BY、GROUP BY 和 UPDATE 优化详解
查看>>
MYSQL sql语句针对数据记录时间范围查询的效率对比
查看>>
mysql sum 没返回,如果没有找到任何值,我如何在MySQL中获得SUM函数以返回'0'?
查看>>
mysql Timestamp时间隔了8小时
查看>>
Mysql tinyint(1)与tinyint(4)的区别
查看>>
mysql union orderby 无效
查看>>
mysql v$session_Oracle 进程查看v$session
查看>>
mysql where中如何判断不为空
查看>>
MySQL Workbench 使用手册:从入门到精通
查看>>
mysql workbench6.3.5_MySQL Workbench
查看>>
MySQL Workbench安装教程以及菜单汉化
查看>>
MySQL Xtrabackup 安装、备份、恢复
查看>>
mysql [Err] 1436 - Thread stack overrun: 129464 bytes used of a 286720 byte stack, and 160000 bytes
查看>>
MySQL _ MySQL常用操作
查看>>
MySQL – 导出数据成csv
查看>>
MySQL —— 在CentOS9下安装MySQL
查看>>
MySQL —— 视图
查看>>
mysql 不区分大小写
查看>>
mysql 两列互转
查看>>
MySQL 中开启二进制日志(Binlog)
查看>>